David McK. Bird

William Neal Reynolds Distinguished Professor
bird@ncsu.edu

Department of Plant Pathology and Bioinformatics Research Center
317A Ricks Hall 1, Lampe Drive, Raleigh NC 27695
Tel: (919) 515-1967 Fax: (919) 515-9500

Advisor:
Dr. Julian R. E. Wells (deceased): Ph. D.
Dr. Donald L. Riddle: postdoc.

Biography

David Bird was born in the “Riverland” wine-producing district of Australia in 1958. He attended the University of Adelaide, and in 1984 received a Ph.D. in Biochemistry. He then spent three years researching C. elegans developmental genetics with Don Riddle in Columbia, Missouri. Following that training, David joined the faculty of the University of California-Riverside, and in 1995 moved to NC State University to join the faculty in Plant Pathology. Dr. Bird sits on numerous university and professional panels and committees, including having served as Chair of the University Research Committee, as Editor-in-Chief of the Journal of Nematology, and as a member of the Science Advisory Board of Divergence Inc. He currently serves as Director of the NCSU Bioinformatics Research Center and as Director of the university’s Genomic Sciences Graduate Program. In 1996, Bird was named the Stoll-Stunkard Memorial Lecturer by the American Society of Parasitologists, and in 2012, Dr. Bird was named William Neal Reynolds Distinguished Professor.

Research

Dr. Bird’s research interests include: nematode biology and development; genome organization and evolution; structure-function relationships; host-parasite interactions; evolution of parasitism; host responses and resistance/susceptibility to pathogens; plant development.

The primary focus of his research group is to understand the mechanisms underlying parasitic interactions between nematodes and plants. David was a pioneer in framing the key questions in the context of nematode and host development. Together with collaborators world-wide, his group has been instrumental in establishing the root-knot nematode, Meloidogyne hapla, as the preeminent genetic system to model less-tractable nematode-host interactions, and as a platform for comparative genomics (www.hapla.org). His current program also emphasizes vaccine development for malaria-like diseases of cats and dogs.

Teaching

In addition to administrative duties as the Director of the interdisciplinary/interdepartmental Genomic Sciences Graduate Program, Dr. Bird teaches in three classes: PP501, PP610/810, and PP790.

PP 610/810-006/Special Topics:  1 credit, Fall 2012

PP 790-006/Special Topics: Advances in Host-Microbe Interactions. 3 credits, Fall 2012
Comprised of 3 five-week modules, this course will provide students with a high-level literature driven overview of recent advances in our understanding of microbial signaling events as they relate to parasitism, mutualism, and host responses. The intent of the course is to promote critical thinking, conceptual learning, and professional development in contemporary biological science. The course will consist of lectures and discussions (MWF) led by the instructors as well as active student involvement that will include leading discussions of published literature. Students with interests in host and pathogen biology, genomic sciences, cellular signaling, and molecular genetics are encouraged to enroll.
Module I: “Changing ideas in plant-microbe interactions: A funding approach”, Instructor: Dr. David Bird.
Module II: “Bacterial Effector Proteins in Plant Disease”, Instructor: Dr. David Ritchie,
Module III: “Nematode Effector Proteins”, Instructor: Dr. Eric Davis.

Selected Publications

Five Most Recent Publications

Imin N, Radzman NAM, Scholl EH, DiGennaro PM, Bird DM and MA Djordjevic, 2012. Bioactive RAR peptides mediate root architecture and are exclusive to higher plants and root-knot nematodes. The Plant Cell,  ms submitted 7/7/12. IF: 8.98

Thomas VP, Fudali SL, Schaff JE, Liu Q, Scholl EH, Opperman CH, Bird DM and VM Williamson. 2012. A sequence-anchored linkage map of the plant-parasitic nematode Meloidogyne haplareveals exceptionally high genome-wide recombination. G3: GENES, GENOMES, GENETICS, 2: 815-824.

Dalzell JJ, McVeigh P, Warnock ND, Mitreva M, Bird, DM, Abad P, Mousley A, Marks NJ and AG Maule. 2011. RNAi effector diversity in nematodes. PLoS Neglected Trop. Dis. 5(6): e1176. IF: 4.2

Scholl EH and DMcK Bird. 2011. Computational and phylogenetic validation of nematode HGT. BMC Biology. 9:9. IF: 5.64

Mbeunkui F, Scholl EH, Opperman CH, Goshe MB and DM Bird. 2010. Proteomic and bioinformatic analysis of the root-knot nematode Meloidogyne hapla: The basis for plant parasitism. J. Proteome Res, 9(10): 5370–5381. IF: 5.13.

Five Highly-Cited Publications

Lohar DP, Schaff JE, Laskey JG, Kieber, JJ, Bilyeu KD and DM Bird. 2004. Cytokinins play opposite roles in lateral root formation, and nematode and rhizobial symbioses. Plant J.,38: 203-214. IF: 6.95. Cited 147 times.

Contrary to what was known about function of the ubiquitous hormone cytokinin, I showed that down regulation of cellular cytokinin is required for lateral root initiation and subsequent cell division.

Opperman CH, Bird DM, Williamson VM. Rohksar DS, Burke M, Cohn J, Cromer J, Diener S, Gajan J, Graham S, Houfek TD, Q Li, Mitros T, Schaff JE, Schaffer R, Scholl E, Sosinski BR, Thomas VP and E Windham.2008. Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism. Proc. Natl. Acad. Sci. (USA), 105: 14802-14807. IF: 9.43 Cited 118 times.

Our complete genome sequence establishes this genetically-tractable parasitic nematode as the reference model to understand plant-parasitism. At 56Mb, this also is the most compact metazoan genome obtained to date.

McCarter JP, Mitreva MD, Martin J, Dante M, Wylie, T, Rao U, Pape D, Bowers Y, Theising B, Murphy C, Kloek AP, Chiapelli B, Clifton SW, Bird DM and R Waterston. 2003. Analysis and functional classification of transcripts from the root-knot nematode Meloidogyne incognita. Genome Biol., 4: R26.1-R26.19. IF: 6.63. Cited 109 times.

The first report of genome-scale analysis of a plant-parasitic nematode. This project defined more than 35,000 distinct genes from 14 nematode species and underpinned obtaining the whole genome sequence.

Scholl EH, Thorne JL, McCarter JP and DM Bird. 2003. Horizontally transferred genes in plant-parasitic nematodes: A high-throughput genomic approach. Genome Biol., 4: R39.1-R39.12. I: 6.6.3. Cited 93 times.

Developed computational tools and confirmed the hypothesis that nematodes acquired genes from bacteria via horizontal gene transfer. This work remains the most definitive evidence for any bacteria-to-animal HGT.

Weerasinghe RR, Bird DM and NS Allen. 2005. Root-knot nematodes and bacterial Nod factors elicit common signal transduction events in Lotus japonicusroot hair cells. Proc. Natl. Acad. Sci. (USA),102: 3147–3152.IF: 9.43. Cited 87 times.

Genetics and cell biology reveal Nem Factor as the first signaling molecule inferred for a plant-parasitic nematode and which defines the primary interaction between host and pathogen.